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Need to Improve Dose Finding in Phase II 
Pairwise comparisons

 Mismatch between real study objectives and objectives in protocol
• Statistical objectives in protocol

- Testing hypotheses: control versus active doses
- Study design determined by this objective (sample size, number of doses, ...) 

• Output of a pairwise analysis

• Conclusion
- All active doses (and the active comparator, AC)  

are significantly different from placebo

• What happens inbetween observed doses? 
What is the shape of the dose-response curve?

• Which doses give similar efficacy as the AC?
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Need to Improve Dose Finding in Phase II 
Model-based analyses

 Modelling provides more 
information
• Smoothes dose estimates 
• Interpolation between doses
• Confidence intervals for quantities 

of interest, e.g. target dose (TD) 
achieving same effect as AC

 Modelling often only done as 
supportive analysis
• Studies not designed for this 

purpose
 Issues with modelling

• Pre-specification
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Need to Improve Dose Finding in Phase II
Finding the right dose is not that simple

 True underlying dose response profile is typically unknown 
before and even after completing a dose finding study 
uncertainty might remain

 Selecting a working model may have a substantial impact 
on the final dose estimate

 Model selection using observed data needs to account for 
the inherent uncertainty
 Useful to have a unified approach combining the advantages of 

dose response signal testing and modeling
 MCP-Mod: A structured approach to model-based design and 

analysis of Phase II dose finding studies under model uncertainty
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MCP-Mod
Development over the past 14 years

 Selected methodological developments
• Bretz et al. (2005): normal homoscedastic data, no covariates
• Pinheiro et al. (2006a): Sample size calculation based on MCP step
• Dette et al. (2008): Optimal designs for Mod step
• Bornkamp et al. (2009): Detailed description of MCP-Mod package in R (later 

converted into DoseFinding package)
• Bornkamp et al. (2011): Adaptive MCP-Mod with Bayesian elements
• Pinheiro et al. (2014): General parametric models (non-normal endpoints, non-

parallel designs)
• König et al (2014): Extension of MCP-Mod to confirmatory studies

 Current software implementations
• DoseFinding package available on CRAN and ADDPLAN DF module

 CHMP (2014) Qualification Opinion and FDA (2016) Fit-for-Purpose 
Determination of MCP-Mod 
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http://cran.r-project.org/web/packages/DoseFinding/index.html
https://iconplc.com/innovation/addplan/
http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2014/02/WC500161027.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM508700.pdf
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Example of a Phase IIb Study (biom)
Study design and summary results

 biom example data set from the DoseFinding R package 
on CRAN

 A randomized double-blind parallel groups trial

 100 patients allocated equally to either placebo or one of 
four active doses coded as 0.05, 0.20, 0.60, and 1

 Normally distributed response variable

 Larger responses indicate better outcomes in efficacy
Dose 0 0.05 0.2 0.6 1
Mean 0.345 0.457 0.810 0.934 0.949
95% CI lower bound* 0.118 0.242 0.486 0.599 0.533
95% CI upper bound 0.571 0.672 1.134 1.270 1.364
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Example of a Phase IIb Study (biom)
Mean plot
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 Mean response at each dose with 95% CI

 Questions:
• Is there a significant dose response signal?
• What is the underlying dose response relationship? 
• What is the minimum effective dose with respect to a target effect? 



MCP-Mod
A unified dose finding approach
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 Identify a set of 𝑀𝑀 parameterized candidate models

𝑓𝑓𝑚𝑚 𝑑𝑑,𝛉𝛉𝑚𝑚 = θ0 + θ1𝑓𝑓𝑚𝑚0(𝑑𝑑,𝛉𝛉𝑚𝑚0 )

together with pre-specified standardized model parameter 
values 𝛉𝛉𝑚𝑚0 for the standardized model𝑓𝑓𝑚𝑚0 𝑑𝑑,𝛉𝛉0 , where 𝑖𝑖 =
1, … ,𝑘𝑘 and 𝑚𝑚 = 1, … ,𝑀𝑀

 Each model will be tested using a contrast test with optimal 
contrast coefficients

MCP-Mod
Candidate models
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 Selected candidate models

 The pre-specified standardized model parameters 𝛉𝛉0 are 
elicited from previous studies, the literature, or discussions 
with clinical teams

Model 𝑓𝑓 (𝑑𝑑,𝜽𝜽) 𝑓𝑓0(𝑑𝑑,𝛉𝛉0) Pre-specified 𝛉𝛉0

Linear 𝐸𝐸0 + 𝛿𝛿𝑑𝑑 𝑑𝑑
Emax 𝐸𝐸0 + 𝐸𝐸max𝑑𝑑/(𝐸𝐸𝐸𝐸50 + 𝑑𝑑) 𝑑𝑑/(𝐸𝐸𝐸𝐸50 + 𝑑𝑑) 𝐸𝐸𝐸𝐸50 = 0.2
Linear log-dose 𝐸𝐸0 + 𝛿𝛿 log(𝑑𝑑 + 𝑐𝑐) log(𝑑𝑑 + 𝑐𝑐)
Exponential 1 𝐸𝐸0 + 𝐸𝐸1 (exp(𝑑𝑑/𝛿𝛿) − 1) exp(𝑑𝑑/𝛿𝛿) – 1 𝛿𝛿 = 0.279
Exponential 2 𝐸𝐸0 + 𝐸𝐸1 (exp(𝑑𝑑/𝛿𝛿) − 1) exp(𝑑𝑑/𝛿𝛿Ꞌ) – 1 𝛿𝛿Ꞌ = 0.15
Quadratic 1 𝐸𝐸0 + 𝛽𝛽1𝑑𝑑 + 𝛽𝛽2𝑑𝑑2 𝑑𝑑 + (𝛽𝛽2/|𝛽𝛽1|)𝑑𝑑2 𝛽𝛽2/|𝛽𝛽1| = −

0.854
Quadratic 2 𝐸𝐸0 + 𝛽𝛽1𝑑𝑑 + 𝛽𝛽2𝑑𝑑2 𝑑𝑑 + (𝛽𝛽2Ꞌ/|𝛽𝛽1Ꞌ|)𝑑𝑑2 𝛽𝛽2Ꞌ/|𝛽𝛽1Ꞌ| = −1

MCP-Mod
biom example revisited: Candidate models
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Emax Exponential 1 Exponential 2 Linear

Linear log Quadratic 1 Quadratic 2

MCP-Mod
biom example revisited: Model shapes
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MCP-Mod
Model contrast test statistics

 Construct multiple contrast tests to detect a positive dose effect 
using optimal coefficients 𝑐𝑐𝑚𝑚1, … 𝑐𝑐𝑚𝑚𝑚𝑚 to maximize the test power 
under model 𝑚𝑚 = 1, … ,𝑀𝑀

 In the balanced (equal allocation) case, 

𝑐𝑐𝑚𝑚𝑚
⋮

𝑐𝑐𝑚𝑚𝑚𝑚
∝

𝜇𝜇𝑚𝑚𝑚 − 𝜇̅𝜇𝑚𝑚
⋮

𝜇𝜇𝑚𝑚𝑚𝑚 − 𝜇̅𝜇𝑚𝑚
∝

𝜇𝜇𝑚𝑚𝑚0 − 𝜇̅𝜇𝑚𝑚0
⋮

𝜇𝜇𝑚𝑚𝑚𝑚0 − 𝜇̅𝜇𝑚𝑚0
,

where 𝜇𝜇𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑚𝑚 𝑑𝑑𝑖𝑖 ,𝛉𝛉𝑚𝑚 , 𝜇̅𝜇𝑚𝑚 = 𝑁𝑁−1 ∑𝑖𝑖=1𝑘𝑘 𝜇𝜇𝑚𝑚𝑚𝑚, 𝜇𝜇𝑚𝑚𝑚𝑚0 = 𝑓𝑓𝑚𝑚0(𝑑𝑑𝑖𝑖 ,𝛉𝛉𝑚𝑚0 ), 
𝜇̅𝜇𝑚𝑚0 = 𝑁𝑁−1 ∑𝑖𝑖=1𝑘𝑘 𝜇𝜇𝑚𝑚𝑚𝑚0 , and 𝑁𝑁 is the total sample size

 The optimal contrast coefficients depend only on the pre-
specified standardized model 𝑓𝑓𝑚𝑚0(𝑑𝑑,𝛉𝛉𝑚𝑚0 )
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Every single contrast test translates into a decision procedure to determine whether the given dose response shape is statistically significant, based on the observed data.




 Optimal coefficients calculated for each candidate model

Dose
Model 0 0.05 0.2 0.6 1
Linear -0.44 -0.38 -0.20 0.27 0.74
Emax -0.64 -0.36 0.06 0.41 0.53
Linear log-dose -0.47 -0.39 -0.16 0.32 0.70
Exponential 1 -0.29 -0.29 -0.26 -0.04 0.87
Exponential 2 -0.24 -0.24 -0.24 -0.17 0.89
Quadratic 1 -0.57 -0.36 0.16 0.71 0.07
Quadratic 2 -0.42 -0.20 0.33 0.71 -0.42

MCP-Mod
biom example revisited: Optimal contrast coefficients
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 Plot of optimal contrast coefficients

 The underlying dose response model shapes are well reflected 
by the optimal contrast shapes

MCP-Mod
biom example revisited: Graphical display of contrast coefficients

17 | Improving Dose Finding in Drug Development: MCP-Mod Approach 



 Two different ways to calculate sample size

• Estimation precision 
- Ensure the width of the confidence intervals for the quantities of interest 

(e.g., MED) are smaller than a pre-specified maximum value

• Power analysis
- Achieve a pre-specified power to detect a significant dose response signal

- Considering the model uncertainty, one could 
• First, calculate the power for each of the candidate models 

• Then, aggregate the resulting values into a single combined measure of power, 
such as the minimum, mean, and maximum

MCP-Mod
Sample size calculation
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 Power to detect a significant dose response signal for 𝜎𝜎 = 1

MCP-Mod
biom example revisited: Sample size calculation
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MCP-Mod
Dose response signal testing

 If observed maximum contrast test statistic
max
𝑚𝑚

𝑇𝑇𝑚𝑚 > 𝑞𝑞1−𝛼𝛼

then we declare a significant dose response signal
• The critical value 𝑞𝑞1−𝛼𝛼 is derived from the multivariate 𝑡𝑡 distribution 

such that under the null hypothesis of no dose response 

Pr max
𝑚𝑚

𝑇𝑇𝑚𝑚 > 𝑞𝑞1−𝛼𝛼 = 𝛼𝛼

 All models with observed 𝑇𝑇𝑚𝑚 > 𝑞𝑞1−𝛼𝛼 are kept for possible 
use in dose response modelling
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MCP-Mod
biom example revisited: Dose response signal testing
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 The 5% one-sided critical value is  𝑞𝑞0.95 = 2.15

 Conclusions:

• Since max
𝑚𝑚

𝑇𝑇𝑚𝑚 = 3.46 > 2.15 = 𝑞𝑞1−𝛼𝛼, we conclude that there is a significant 
dose response signal

• Models with 𝑇𝑇𝑚𝑚 > 𝑞𝑞0.95 are selected as significant models

Model Estimate Standard error 𝑇𝑇𝑚𝑚
Emax 0.55 0.159 3.46
Linear log-dose 0.49 0.159 3.11
Quadratic 1 0.49 0.159 3.10
Linear 0.47 0.159 2.97
Exponential 1 0.35 0.159 2.22
Exponential 2 0.30 0.159 1.90
Quadratic 2 0.29 0.159 1.85



MCP-Mod 
Model selection

 Either select a single model from the significant models 
• Existing model selection criteria can be used, such as 

- Akaike information criterion (AIC)

- Bayesian information criterion (BIC)

- maximum contrast test statistics (not recommended)

 Or apply model averaging techniques
• Weighted estimates across all the significant models are produced for 

the quantities of interest (Buckland et al., 1997)
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MCP-Mod
Dose estimation and selection

 Based on dose response modelling approaches, the 
selected model is used to fit the observed data and 
estimate a target dose (such as the MED or the 𝐸𝐸𝐷𝐷90)
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 Model selection, fitting and MED estimation via MCPMod
function in DoseFinding R package 
 Output (edited):

 Emax model is selected from the candidate models and 
used for model parameter and MED estimation
• Note that the Emax model above is the best fitting Emax model to 

the observed data and not the specific model shape included in the 
candidate set

Selected model (AIC): emax

Estimated Dose Response Model:
emax model

e0  eMax  ed50 
0.322 0.746 0.142 

Estimated MED, Delta=0.4
emax

0.1642

MCP-Mod
biom example revisited: Dose response and MED estimation
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 Assume patient responses 𝒚𝒚 follow some distribution
𝒚𝒚 ∼ 𝐹𝐹 𝒛𝒛,𝜼𝜼, 𝜇𝜇 𝑑𝑑 , 

where 
• 𝜇𝜇 𝑑𝑑 denotes the dose response information at dose 𝑑𝑑
• 𝜼𝜼 nuisance parameters 
• 𝒛𝒛 covariates

 Main idea
• Extract dose response parameters 𝜇𝜇 𝑑𝑑𝑖𝑖 from this model and perform 

contrast test and dose response model fitting on these parameters

 Concrete example to keep in mind
• 𝜇𝜇 𝑑𝑑𝑖𝑖 coming from a normal model 𝑁𝑁 𝜇𝜇 𝑑𝑑𝑖𝑖 ,𝜎𝜎2

Generalized MCP-Mod
Notation
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 Examples of application include
• Binary data: 𝜇𝜇 𝑑𝑑 could be the probability or logit(probability) 
• Negative binomial data: 𝜇𝜇 𝑑𝑑 could be the log-mean of the distribution
• Weibull: 𝜇𝜇 𝑑𝑑 could be the median of the survival distribution (using a 

re-parameterization of the Weibull model)
• Cox PH: Requires working on control-adjusted data (not discussed 

here, but see Pinheiro et al. 2014)
• Major restriction: 𝜇𝜇 𝑑𝑑 should be easily interpretable 

- need to formulate candidate models on this scale

 In each case: Fit an ANCOVA-type model (i.e. a model with 
dose as factor) and extract estimates �𝝁𝝁 and corresponding 
estimated covariance matrix 𝑺𝑺
• From there on, all cases are treated the same way

Generalized MCP-Mod
Applications
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 At design stage 
• Specify multiple candidate dose-response shapes 𝝁𝝁1, … ,𝝁𝝁𝑀𝑀
• Derive optimal contrasts 𝒄𝒄1

𝑜𝑜𝑜𝑜𝑜𝑜 , … , 𝒄𝒄𝑀𝑀
𝑜𝑜𝑜𝑜𝑜𝑜 for these shapes

 At analysis stage: 
• Derive �𝝁𝝁 and 𝑺𝑺 based on the observed data and the contrast test 

statistics

𝑧𝑧𝑚𝑚 = �𝒄𝒄𝑚𝑚
𝑜𝑜𝑜𝑜𝑜𝑜 ′

�𝝁𝝁 𝒄𝒄𝑚𝑚
𝑜𝑜𝑜𝑜𝑜𝑜 ′

𝑺𝑺 𝒄𝒄𝑚𝑚
𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑚𝑚 = 1, … ,𝑀𝑀

• Calculation of p-values can be done via the joint distribution of 
𝑧𝑧1, … , 𝑧𝑧𝑀𝑀 under the null hypothesis of no dose response

Generalized MCP-Mod
MCP step
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 Assume a particular dose-response mean vector

𝝁𝝁𝑚𝑚 = 𝜇𝜇 𝑑𝑑1 , … , 𝜇𝜇 𝑑𝑑𝑘𝑘

for 𝑘𝑘 active doses 𝑑𝑑1, … ,𝑑𝑑𝑘𝑘, including placebo

 Maximizing power of the single contrast test is the same as 
maximizing the non-centrality parameter ⁄𝒄𝒄′𝝁𝝁𝑚𝑚 𝒄𝒄′𝑆𝑆𝒄𝒄

 Optimization leads to

𝒄𝒄𝑚𝑚
𝑜𝑜𝑜𝑜𝑜𝑜 ∝ 𝑺𝑺−1 𝝁𝝁𝑚𝑚 −

𝝁𝝁𝑚𝑚′𝑺𝑺−1𝟏𝟏
𝟏𝟏𝟏𝑺𝑺−1𝟏𝟏

Generalized MCP-Mod
MCP step – derivation of optimal contrasts
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 If the asymptotic distribution of �𝝁𝝁 is multivariate normal, 
then the distribution of the contrast statistics is also 
multivariate normal
• In the case of normal data the exact distribution is multivariate t

 Multiple models ⇒ multiple test problem 
• Using 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 = max 𝑧𝑧𝑚𝑚 with an appropriate critical value 𝑞𝑞1−𝛼𝛼 ensures 

overall Type I error rate control at pre-specified level 𝛼𝛼 ∈ 0,1

Generalized MCP-Mod
MCP step
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Generalized MCP-Mod
Mod step
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 All models with significant contrast test statistic are fitted 

 For normally distributed data, minimize least squares 

 For generalized approach, assume �𝝁𝝁 is available that is 
multivariate normal distributed with covariance matrix 𝑺𝑺
• Use generalized least squares

�𝝁𝝁 − 𝝁𝝁 𝑑𝑑 ′𝑺𝑺−1 �𝝁𝝁 − 𝝁𝝁 𝑑𝑑

• Advantages
- Applicable to non-normal and/or correlated data 
- Asymptotic approximations available (similar asymptotic distribution as MLE)
- Often numerically similar to „traditional“ ML estimates
- Only one software implementation needed for all parametric models with 

estimation methods leading to parameter estimates with asymptotic 
multivariate normal distribution



 Model-based analysis
• Either select one model (AIC, BIC, ...)
• Or perform model averaging, e.g. 

- by using weights determined by AIC, BIC
- i.e. using weights proportional to 𝑒𝑒𝑒𝑒𝑒𝑒 ⁄−𝐴𝐴𝐴𝐴𝐶𝐶𝑚𝑚 2 or 𝑒𝑒𝑒𝑒𝑒𝑒 ⁄−𝐵𝐵𝐼𝐼𝐶𝐶𝑚𝑚 2

- or by bootstrapping the model selection itself and using bootstrap estimates

 Perform inference on quantities of interest using the 
selected dose response model(s)

Generalized MCP-Mod
Mod step
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 Disease progression measured by functional scale that 
decreases linearly with time

 Objective is to reduce, or stop, rate of worsening over time 
(i.e., impact slope)

 Trial design:
• Placebo and 4 doses (1, 3, 10, 30 mg), balanced with 50 patients/arm
• one year duration with measurements at baseline and every 3 months 

thereafter

 Study objective: test dose response signal, and estimate 
dose-time response

Example
Background
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 Loess smoother on historical placebo data

Example
Linearity of functional scale

0 2 4 6 8

Time (months)

Fu
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na

l s
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le
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 Initial dose-time response model with an ANOVA-type 
parameterization for the functional scale measurement 𝑦𝑦𝑖𝑖𝑖𝑖
on patient 𝑖𝑖 at time 𝑡𝑡,

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝑏𝑏0𝑖𝑖 + 𝜇𝜇 𝑑𝑑 + 𝑏𝑏1𝑖𝑖 𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖

where
• 𝜇𝜇 𝑑𝑑 is the parameter of interest (linear slope of disease progression)
• 𝑏𝑏0𝑖𝑖 ,𝑏𝑏1𝑖𝑖 are patient specific random effects (intercept and slope)
• 𝑏𝑏0𝑖𝑖 ,𝑏𝑏1𝑖𝑖 ∼ 𝑁𝑁 𝟎𝟎,𝚲𝚲 and 𝜀𝜀𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁 0,𝜎𝜎2

Example
Two-stage approach
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 The dose-response parameter 𝜇𝜇 𝑑𝑑 is expected time slope, 
which is expressed by a second-level model, 
• For example, for the Emax model

𝜇𝜇 𝑑𝑑 = 𝐸𝐸0 + 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑
𝐸𝐸𝐷𝐷50+𝑑𝑑

 Under ANOVA parameterization for 𝜇𝜇 𝑑𝑑 , LME model is 
used to fit data; parametric models for 𝜇𝜇 𝑑𝑑 require NLME
modeling 

Example
Two-stage approach
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 Placebo effect: 0 change in slope (natural progression)

 Maximum improvement over placebo for dose range: 2

 Target effect: 1.4 

 From historical data, estimates for variance-covariance 
parameters
• 𝑣𝑣𝑣𝑣𝑣𝑣 𝑏𝑏0𝑖𝑖 ≈ 64; 𝑣𝑣𝑣𝑣𝑣𝑣 𝑏𝑏1𝑖𝑖 ≈ 16; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏0𝑖𝑖 ,𝑏𝑏1𝑖𝑖 ≈ −0.2;𝑣𝑣𝑣𝑣𝑣𝑣 𝜀𝜀𝑖𝑖𝑖𝑖 = 4

 Based on these and assumed design (sample size, visits, 
doses, etc.), can derive estimate for covariance matrix of 
ANOVA estimates
• Compound symmetry with variance 0.1451 and covariance 0.0092

Example
Assumptions
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 Plausible dose response shapes for slope: linear, Emax, 
exponential, and quadratic

 Estimates of model parameters obtained from discussions 
with clinical team

Example
Candidate models
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 Longitudinal data simulated according to Emax candidate 
model (and previous assumptions)

Example
Simulated data for illustration
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Example
DoseFinding package – LME fit with ANOVA parameterization

> library(nlme)
> fm <- lme(resp ~ dose:time, dat, ~time|id)
> 
> muH <- fixef(fm)[-1]                      # extract d-r estimates to work with
> muH
dose0:time dose1:time  dose3:time dose10:time  dose30:time 

-5.099     -4.581      -3.220      -2.879       -3.520  
> 
> covH <- vcov(fm)[-1,-1]                    # and their covariance matrix
> covH

dose0:time dose1:time dose3:time dose10:time dose30:time
dose0:time      0.1490     0.0094     0.0094      0.0094      0.0094
dose1:time      0.0094     0.1490     0.0094      0.0094      0.0094
dose3:time      0.0094     0.0094     0.1490      0.0094      0.0094
dose10:time     0.0094     0.0094     0.0094      0.1490      0.0094
dose30:time     0.0094     0.0094     0.0094      0.0094      0.1490
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Example
DoseFinding package – Testing and modelling
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Example
NLME model fit of dose time response model

## emax
> fmE <- nlme(resp ~ b0 + (e0 + eM * dose/(ed50 + dose))*time, dat,

fixed = b0 + e0 + eM + ed50 ~ 1, random = b0 + e0 ~ 1 | id,
start = c(200, -4.6, 1.6, 3.2))

## quadratic
> fmQ <- nlme(resp ~ b0+(e0 + e1 * dose + e2 * dose * dose)*time, dat,

fixed = b0 + e0 + e1 + e2 ~ 1, random = b0 + e0 ~ 1 | id,
start = c(200, -4.5, 0.144, -0.033))

> fmE
. . .

Log-likelihood: -4180.254
Fixed: b0 + e0 + eM + ed50 ~ 1 

b0         e0         eM ed50 
200.451303  -5.178739   2.181037   1.198791

 Parameter estimates from NLME fit are very close to the 
ones from second-level model fit
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Outline

 Introduction

 MCP-Mod approach

 Summary
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MCP-Mod
In-scope: When to use MCP-Mod

 Drug development stage
• Phase II dose finding studies to support dose selection for Phase III

 Response
• Univariate (efficacy or safety) measurement (could be a binary, 

count, continuous or time-to-event endpoint). Observations typically 
cross-sectional (i.e. from a single time point)

 Dose
• Or any other univariate, continuous, quantitative measurement

 Rules of thumb: 
• 4 − 7 active doses
• > 10-fold dose-range, logarithmic dose-spacing
• include placebo and/or active control
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MCP-Mod
Out-of-scope: When not to use MCP-Mod

 Titration designs and dose escalation studies

 Vaccines and regimen finding for biologics where there is 
no steady state

 Exposure-response analyses or pharmacokinetic-
pharmacodynamic (PK-PD) models
• similar principles could/should be applied
• MCP-Mod is focused on dose response modelling only

 Predictions from a surrogate / biomarker or short term 
readout to a clinical Phase III endpoint
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FDA Fit-for-Purpose Determination of MCP-Mod
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MCP-Mod: CHMP (2014) Qualification Opinion 
and (2016) FDA Fit-for-Purpose Determination

 Both emphasize the importance of conducting proper dose-
finding studies before going to Phase III

 MCP-Mod will encourage better study designs (with more 
dose levels and broader dose-range)
• MCP-Mod is only one method among several others

 Acceptance of model-based techniques often subject to 
discussion 
• EMA/CHMP and FDA are positive on MCP-Mod

 Difference of MCP-Mod to other model-based approaches
• Modelling activity is pre-specified at design stage (less „cherry-picking“)

• Acknowledges model uncertainty
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Dose Finding
Take home messages

 Precise estimation of dose response provides the strongest 
basis supporting dose selection for Phase III / submissions

 Traditional dose ranging designs do not provide explicit dose 
response characterization, and often lack precision to 
differentiate active doses

 Model-based dose response assessment requires careful 
consideration of trial design
• Essential to ensure inclusion of sufficient doses to cover both the 

steep part of the curve and the plateau

 Dose response relationships exist for both efficacy and safety, 
and it is necessary to estimate the therapeutic window

 Adaptive designs, in which dose allocation changes based on 
observed responses, should routinely be considered
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Q&A
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