Dose Finding Under Model Uncertainty with the MCP-Mod Approach

José Pinheiro Janssen R&D

Joint work with **Frank Bretz** and **Björn Bornkamp** (Novartis AG)

BASS XXVIII – Virtual – October 25, 2021

Outline

- Motivation
- MCP-Mod approach
 - Independent and normally distributed data
 - More general data distributions
- Summary

Outline

Motivation

- MCP-Mod approach
- Summary

Need to Improve Dose Finding in Phase II

Pairwise comparisons

- Mismatch between real study objectives and objectives in protocol
 - Statistical objectives in protocol
 - Testing hypotheses: control versus active doses
 - Study design determined by this objective (sample size, number of doses, ...)
 - Output of a pairwise analysis

- Conclusion
 - All active doses (and the active comparator, AC) are significantly different from placebo
- What happens inbetween observed doses?
 What is the shape of the dose-response curve?
- Which doses give similar efficacy as the AC?

Need to Improve Dose Finding in Phase II Model-based analyses

Need to Improve Dose Finding in Phase II Finding the right dose is not that simple

- True underlying dose response profile is typically unknown before and even after completing a dose finding study uncertainty might remain
- Selecting a working model may have a substantial impact on the final dose estimate
- Model selection using observed data needs to account for the inherent uncertainty
 - ➔ Useful to have a unified approach combining the advantages of dose response signal testing and modeling
 - → MCP-Mod: A structured approach to model-based design and analysis of Phase II dose finding studies under model uncertainty

MCP-Mod

Development over the past 14 years

- Selected methodological developments
 - Bretz et al. (2005): normal homoscedastic data, no covariates
 - Pinheiro et al. (2006a): Sample size calculation based on MCP step
 - Dette et al. (2008): Optimal designs for Mod step
 - Bornkamp et al. (2009): Detailed description of MCP-Mod package in R (later converted into DoseFinding package)
 - Bornkamp et al. (2011): Adaptive MCP-Mod with Bayesian elements
 - Pinheiro et al. (2014): General parametric models (non-normal endpoints, nonparallel designs)
 - König et al (2014): Extension of MCP-Mod to confirmatory studies
- Current software implementations
 - DoseFinding package <u>available on CRAN</u> and <u>ADDPLAN DF</u> module
- CHMP (2014) <u>Qualification Opinion</u> and FDA (2016) <u>Fit-for-Purpose</u> <u>Determination</u> of MCP-Mod

7 | Improving Dose Finding in Drug Development: MCP-Mod Approach

Outline

Introduction

MCP-Mod approach

- Independent and normally distributed data
- More general data distributions

Summary

Example of a Phase IIb Study (biom) Study design and summary results

- biom example data set from the DoseFinding R package on CRAN
- A randomized double-blind parallel groups trial
- 100 patients allocated equally to either placebo or one of four active doses coded as 0.05, 0.20, 0.60, and 1
- Normally distributed response variable
- Larger responses indicate better outcomes in efficacy

Dose	0	0.05	0.2	0.6	1
Mean	0.345	0.457	0.810	0.934	0.949
95% CI lower bound*	0.118	0.242	0.486	0.599	0.533
95% CI upper bound	0.571	0.672	1.134	1.270	1.364

9 | Improving Dose Finding in Drug Development: MCP-Mod Approach

* CI: confidence interval

Example of a Phase IIb Study (biom) Mean plot

Mean response at each dose with 95% CI

Is there a significant dose response signal?

Questions:

- What is the underlying dose response relationship?
- What is the minimum effective dose with respect to a target effect?

MCP-Mod A unified dose finding approach

General design considerations Determination of suitable study population, endpoints, etc.

Set of candidate models

Pre-specification of candidate dose-response models based on available information (similar compounds, mode of action)

Identify a set of *M* parameterized candidate models

$$f_m(d, \mathbf{\Theta}_m) = \theta_0 + \theta_1 f_m^0(d, \mathbf{\Theta}_m^0)$$

together with pre-specified standardized model parameter values θ_m^0 for the standardized model $f_m^0(d, \theta^0)$, where i = 1, ..., k and m = 1, ..., M

 Each model will be tested using a contrast test with optimal contrast coefficients

Selected candidate models

Model	$f(d, \theta)$	$f^0(d, \theta^0)$	Pre-specified 00
Linear	$E_0 + \delta d$	d	
Emax	$E_0 + E_{\rm max} d / (ED_{50} + d)$	$d/(\underline{ED}_{50} + d)$	$ED_{50} = 0.2$
Linear log-dose	$E_0 + \delta \log(d + c)$	$\log(d + c)$	
Exponential 1	$E_0 + E_1(\exp(d/\delta) - 1)$	$\exp(d/\delta) - 1$	$\delta = 0.279$
Exponential 2	$E_0 + E_1(\exp(d/\delta) - 1)$	$\exp(d/\delta') - 1$	$\delta' = 0.15$
Quadratic 1	$E_0 + \beta_1 d + \beta_2 d^2$	$d + (\beta_2 / \beta_1) d^2$	$\beta_2 / \beta_1 = -0.854$
Quadratic 2	$E_0 + \beta_1 d + \beta_2 d^2$	$d + (\beta_2' / \beta_1') d^2$	$ \beta_{2'}/ \beta_{1'} = -1$

The pre-specified standardized model parameters 0⁰ are elicited from previous studies, the literature, or discussions with clinical teams

MCP-Mod biom example revisited: Model shapes

F

Set of candidate models

Pre-specification of candidate dose-response models based on available information (similar compounds, mode of action)

Optimal statistical tests

Optimized for candidate dose-response shapes

- Construct multiple contrast tests to detect a positive dose effect using optimal coefficients $c_{m1}, \dots c_{mk}$ to maximize the test power under model $m = 1, \dots, M$
- In the balanced (equal allocation) case,

$$\begin{pmatrix} c_{m1} \\ \vdots \\ c_{mk} \end{pmatrix} \propto \begin{pmatrix} \mu_{m1} - \bar{\mu}_m \\ \vdots \\ \mu_{mk} - \bar{\mu}_m \end{pmatrix} \propto \begin{pmatrix} \mu_{m1}^0 - \bar{\mu}_m^0 \\ \vdots \\ \mu_{mk}^0 - \bar{\mu}_m^0 \end{pmatrix},$$

where $\mu_{mi} = f_m (d_i, \theta_m)$, $\bar{\mu}_m = N^{-1} \sum_{i=1}^k \mu_{mi}$, $\mu_{mi}^0 = f_m^0 (d_i, \theta_m^0)$, $\bar{\mu}_m^0 = N^{-1} \sum_{i=1}^k \mu_{mi}^0$, and *N* is the total sample size

• The optimal contrast coefficients depend only on the prespecified standardized model $f_m^0(d, \theta_m^0)$ Optimal coefficients calculated for each candidate model

			Dose		
Model	0	0.05	0.2	0.6	1
Linear	-0.44	-0.38	-0.20	0.27	0.74
Emax	-0.64	-0.36	0.06	0.41	0.53
Linear log-dose	-0.47	-0.39	-0.16	0.32	0.70
Exponential 1	-0.29	-0.29	-0.26	-0.04	0.87
Exponential 2	-0.24	-0.24	-0.24	-0.17	0.89
Quadratic 1	-0.57	-0.36	0.16	0.71	0.07
Quadratic 2	-0.42	-0.20	0.33	0.71	-0.42

MCP-Mod biom example revisited: Graphical display of contrast coefficients

Plot of optimal contrast coefficients

 The underlying dose response model shapes are well reflected by the optimal contrast shapes

Optimal statistical tests

Optimized for candidate dose-response shapes

Design evaluations

Dose determination and sample size calculation to achieve targeted performance characteristics

- Two different ways to calculate sample size
 - Estimation precision
 - Ensure the width of the confidence intervals for the quantities of interest (e.g., MED) are smaller than a pre-specified maximum value
 - Power analysis
 - Achieve a pre-specified power to detect a significant dose response signal
 - Considering the model uncertainty, one could
 - First, calculate the power for each of the candidate models
 - Then, aggregate the resulting values into a single combined measure of power, such as the minimum, mean, and maximum

• Power to detect a significant dose response signal for $\sigma = 1$

^{19 |} Improving Dose Finding in Drug Development: MCP-Mod Approach

MCP-Mod Dose response signal testing

Design evaluations

Dose determination and sample size calculation to achieve targeted performance characteristics

Assessment of dose-response signal using contrast tests

MCP step

If observed maximum contrast test statistic

 $\max_m T_m > q_{1-\alpha}$

then we declare a significant dose response signal

• The critical value $q_{1-\alpha}$ is derived from the multivariate *t* distribution such that under the null hypothesis of no dose response

$$\Pr\left(\max_{m} T_{m} > q_{1-\alpha}\right) = \alpha$$

- All models with observed $T_m > q_{1-\alpha}$ are kept for possible use in dose response modelling

MCP-Mod biom example revisited: Dose response signal testing

• The 5% one-sided critical value is $q_{0.95} = 2.15$

Model	Estimate	Standard error	
Emax	0.55	0.159	3.46
Linear log-dose	0.49	0.159	3.11
Quadratic 1	0.49	0.159	3.10
Linear	0.47	0.159	2.97
Exponential 1	0.35	0.159	2.22
Exponential 2	0.30	0.159	1.90
Quadratic 2	0.29	0.159	1.85

Conclusions:

- Since $\max_{m} T_{m} = 3.46 > 2.15 = q_{1-\alpha}$, we conclude that there is a significant dose response signal
- Models with $T_m > q_{0.95}$ are selected as significant models

Assessment of dose-response signal using contrast tests

- Model selection (or model averaging) out of the set of significant models
- Either select a single model from the significant models
 - Existing model selection criteria can be used, such as
 - Akaike information criterion (AIC)
 - Bayesian information criterion (BIC)
 - maximum contrast test statistics (not recommended)
- Or apply model averaging techniques
 - Weighted estimates across all the significant models are produced for the quantities of interest (Buckland et al., 1997)

MCP-Mod Dose estimation and selection	MCP step
	 Assessment of dose-response signal using contrast tests
	 Model selection (or model averaging) out of the set of significant models
	Mod step
	Dose-response and target dose estimation based on selected model(s)

 Based on dose response modelling approaches, the selected model is used to fit the observed data and estimate a target dose (such as the MED or the ED₉₀)

MCP-Mod

biom example revisited: Dose response and MED estimation

- Model selection, fitting and MED estimation via MCPMod function in DoseFinding R package
- Output (edited): selected model (AIC): emax

Estimated Dose Response Model: emax model e0 eMax ed50 0.322 0.746 0.142 Estimated MED, Delta=0.4 emax 0.1642

- Emax model is selected from the candidate models and used for model parameter and MED estimation
 - Note that the Emax model above is the best fitting Emax model to the observed data and not the specific model shape included in the candidate set

24 | Improving Dose Finding in Drug Development: MCP-Mod Approach

Outline

Introduction

MCP-Mod approach

- Independent and normally distributed data
- More general data distributions
- Summary

Generalized MCP-Mod

Assume patient responses y follow some distribution

$$\boldsymbol{y} \sim F(\boldsymbol{z}, \boldsymbol{\eta}, \boldsymbol{\mu}(d)),$$

where

- $\mu(d)$ denotes the dose response information at dose d
- η nuisance parameters
- z covariates

Main idea

- Extract dose response parameters $\mu(d_i)$ from this model and perform contrast test and dose response model fitting on these parameters
- Concrete example to keep in mind
 - $\mu(d_i)$ coming from a normal model $N(\mu(d_i), \sigma^2)$

26 | Improving Dose Finding in Drug Development: MCP-Mod Approach

Generalized MCP-Mod Applications

- Examples of application include
 - Binary data: $\mu(d)$ could be the probability or logit(probability)
 - Negative binomial data: $\mu(d)$ could be the log-mean of the distribution
 - Weibull: $\mu(d)$ could be the median of the survival distribution (using a re-parameterization of the Weibull model)
 - Cox PH: Requires working on control-adjusted data (not discussed here, but see Pinheiro et al. 2014)
 - Major restriction: $\mu(d)$ should be easily interpretable
 - need to formulate candidate models on this scale
- In each case: Fit an ANCOVA-type model (i.e. a model with dose as factor) and extract estimates $\hat{\mu}$ and corresponding estimated covariance matrix *S*
 - From there on, all cases are treated the same way

Generalized MCP-Mod MCP step

- At design stage
 - Specify multiple candidate dose-response shapes $\mu_1, ..., \mu_M$
 - Derive optimal contrasts c_1^{opt} , ..., c_M^{opt} for these shapes
- At analysis stage:
 - Derive $\widehat{\mu}$ and ${\it S}$ based on the observed data and the contrast test statistics

$$z_m = (\boldsymbol{c}_m^{opt})' \hat{\boldsymbol{\mu}} / \sqrt{(\boldsymbol{c}_m^{opt})' \boldsymbol{S}(\boldsymbol{c}_m^{opt})}, \qquad m = 1, \dots, M$$

• Calculation of p-values can be done via the joint distribution of z_1, \ldots, z_M under the null hypothesis of no dose response

Assume a particular dose-response mean vector

$$\boldsymbol{\mu}_m = \left(\mu(d_1), \dots, \mu(d_k) \right)$$

for k active doses d_1, \ldots, d_k , including placebo

- Maximizing power of the single contrast test is the same as maximizing the non-centrality parameter $c'\mu_m/\sqrt{c'Sc}$
- Optimization leads to

$$\boldsymbol{c}_m^{opt} \propto \boldsymbol{S}^{-1} \left(\boldsymbol{\mu}_m - \frac{\boldsymbol{\mu}_m' \boldsymbol{S}^{-1} \boldsymbol{1}}{\boldsymbol{1}' \boldsymbol{S}^{-1} \boldsymbol{1}} \right)$$

Generalized MCP-Mod MCP step

- If the asymptotic distribution of $\hat{\mu}$ is multivariate normal, then the distribution of the contrast statistics is also multivariate normal
 - In the case of normal data the exact distribution is multivariate t
- Multiple models ⇒ multiple test problem
 - Using $z_{max} = \max z_m$ with an appropriate critical value $q_{1-\alpha}$ ensures overall Type I error rate control at pre-specified level $\alpha \in (0,1)$

- All models with significant contrast test statistic are fitted
- For normally distributed data, minimize least squares
- For generalized approach, assume $\hat{\mu}$ is available that is multivariate normal distributed with covariance matrix *S*
 - Use generalized least squares

$$(\widehat{\boldsymbol{\mu}} - \boldsymbol{\mu}(d))' \boldsymbol{S}^{-1} (\widehat{\boldsymbol{\mu}} - \boldsymbol{\mu}(d))$$

- Advantages
 - Applicable to non-normal and/or correlated data
 - Asymptotic approximations available (similar asymptotic distribution as MLE)
 - Often numerically similar to "traditional" ML estimates
 - Only one software implementation needed for all parametric models with estimation methods leading to parameter estimates with asymptotic multivariate normal distribution

Generalized MCP-Mod Mod step

- Model-based analysis
 - Either select one model (AIC, BIC, ...)
 - Or perform model averaging, e.g.
 - by using weights determined by AIC, BIC
 - i.e. using weights proportional to $exp(-AIC_m/2)$ or $exp(-BIC_m/2)$
 - or by bootstrapping the model selection itself and using bootstrap estimates
- Perform inference on quantities of interest using the selected dose response model(s)

- Disease progression measured by functional scale that decreases linearly with time
- Objective is to reduce, or stop, rate of worsening over time (i.e., impact slope)
- Trial design:
 - Placebo and 4 doses (1, 3, 10, 30 mg), balanced with 50 patients/arm
 - one year duration with measurements at baseline and every 3 months thereafter
- Study objective: test dose response signal, and estimate dose-time response

Example *Linearity of functional scale*

Loess smoother on historical placebo data

Time (months)

 Initial dose-time response model with an ANOVA-type parameterization for the functional scale measurement y_{it} on patient i at time t,

$$y_{it} = (\beta_0 + b_{0i}) + (\mu(d) + b_{1i})t + \varepsilon_{ij}$$

where

- $\mu(d)$ is the parameter of interest (linear slope of disease progression)
- b_{0i} , b_{1i} are patient specific random effects (intercept and slope)
- $(b_{0i}, b_{1i}) \sim N(\mathbf{0}, \mathbf{\Lambda})$ and $\varepsilon_{ij} \sim N(\mathbf{0}, \sigma^2)$

- The dose-response parameter µ(d) is expected time slope, which is expressed by a second-level model,
 - For example, for the Emax model

$$\mu(d) = E_0 + E_{max\frac{d}{ED_{50}+d}}$$

 Under ANOVA parameterization for µ(d), LME model is used to fit data; parametric models for µ(d) require NLME modeling

- Placebo effect: 0 change in slope (natural progression)
- Maximum improvement over placebo for dose range: 2
- Target effect: 1.4
- From historical data, estimates for variance-covariance parameters
 - $var(b_{0i}) \approx 64$; $var(b_{1i}) \approx 16$; $corr(b_{0i}, b_{1i}) \approx -0.2$; $var(\varepsilon_{ij}) = 4$
- Based on these and assumed design (sample size, visits, doses, etc.), can derive estimate for covariance matrix of ANOVA estimates
 - Compound symmetry with variance 0.1451 and covariance 0.0092

Model means

- Plausible dose response shapes for slope: linear, Emax, exponential, and quadratic
- Estimates of model parameters obtained from discussions with clinical team

38 | Improving Dose Finding in Drug Development: MCP-Mod Approach

 Longitudinal data simulated according to Emax candidate model (and previous assumptions)

Example DoseFinding package – LME fit with ANOVA parameterization

```
> library(nlme)
       <- lme(resp ~ dose:time, dat, ~time|id)
 fm
>
>
> muH <- fixef(fm)[-1]</pre>
                                              # extract d-r estimates to work with
> muH
dose0:time dose1:time dose3:time dose10:time dose30:time
     -5.099
                -4.581
                            -3.220
                                         -2.879
                                                      -3.520
>
> covH <- vcov(fm)[-1,-1]</pre>
                                              # and their covariance matrix
> COVH
            dose0:time dose1:time dose3:time dose10:time dose30:time
                0.1490
                           0.0094
                                      0.0094
dose0:time
                                                   0.0094
                                                               0.0094
dose1:time
                0.0094
                           0.1490
                                      0.0094
                                                   0.0094
                                                               0.0094
dose3:time
                0.0094
                           0.0094
                                      0.1490
                                                   0.0094
                                                               0.0094
dose10:time
                0.0094
                           0.0094
                                      0.0094
                                                   0.1490
                                                               0.0094
dose30:time
                0.0094
                           0.0094
                                      0.0094
                                                   0.0094
                                                               0.1490
```

Example DoseFinding package – Testing and modelling

> MCTtest(doses, muH, S=covH, type = "general", critV = T, contMat=contMat)
. . .
Multiple Contrast Test:

	t-Stat	adj-p
emax	4.5606	< 1e-04
quadratic	3.6795	0.0002323
linear	2.2739	0.0252661
exponential	1.2767	0.1822576

Critical value: 2.2768 (alpha = 0.025, one-sided)

> fitMod(doses, muH, S=covH, model="emax", type = "general", bnds=c(0.1, 10))
Dose Response Model

Model: emax Fit-type: general

Coefficients dose-response model

e0 eMax ed50 -5.1808 2.1802 1.1873

Example *NLME model fit of dose time response model*

```
## emax
> fmE <- nlme(resp \sim b0 + (e0 + eM * dose/(ed50 + dose))*time, dat,
            fixed = b0 + e0 + eM + ed50 \sim 1, random = b0 + e0 \sim 1 | id,
            start = c(200, -4.6, 1.6, 3.2))
## guadratic
> fmQ <- nlme(resp \sim b0+(e0 + e1 * dose + e2 * dose * dose)*time. dat.
            fixed = b0 + e0 + e1 + e2 \sim 1, random = b0 + e0 \sim 1 | id,
            start = c(200, -4.5, 0.144, -0.033))
> fmE
  Log-likelihood: -4180.254
  Fixed: b0 + e0 + eM + ed50 \sim 1
        b0
                   e0
                                         ed50
                               eM
200.451303 -5.178739 2.181037 1.198791
```

Parameter estimates from NLME fit are very close to the ones from second-level model fit

Outline

- Introduction
- MCP-Mod approach
- Summary

MCP-Mod In-scope: When to use MCP-Mod

- Drug development stage
 - Phase II dose finding studies to support dose selection for Phase III

Response

 Univariate (efficacy or safety) measurement (could be a binary, count, continuous or time-to-event endpoint). Observations typically cross-sectional (i.e. from a single time point)

Dose

• Or any other univariate, continuous, quantitative measurement

Rules of thumb:

- 4 7 active doses
- > 10-fold dose-range, logarithmic dose-spacing
- include placebo and/or active control

MCP-Mod Out-of-scope: When not to use MCP-Mod

- Titration designs and dose escalation studies
- Vaccines and regimen finding for biologics where there is no steady state
- Exposure-response analyses or pharmacokineticpharmacodynamic (PK-PD) models
 - similar principles could/should be applied
 - MCP-Mod is focused on dose response modelling only
- Predictions from a surrogate / biomarker or short term readout to a clinical Phase III endpoint

23 January 2014 EMA/CHMP/SAWP/757052/2013 Committee for Medicinal Products for Human Use (CHMP)

Qualification Opinion of MCP-Mod as an efficient statistical methodology for model-based design and analysis of Phase II dose finding studies under model uncertainty

Draft agreed by Scientific Advice Working Party	5 September 2013
Adopted by CHMP for release for consultation	19 September 2013 ¹
Start of public consultation	15 October 2013 ²
End of consultation (deadline for comments)	24 November 2013 ³
Adoption by CHMP	23 January 2014

FDA Fit-for-Purpose Determination of MCP-Mod

DEPARTMENT OF HEALTH & HUMAN SERVICES

Food and Drug Administration Silver Spring, MD 20993

May 26, 2016

Janssen Research & Development, LLC Attention: Purve Patel, RPh Director, Global Regulatory Affairs 920 Highway 202, South Raritan, NJ 088969

Dear Ms. Patel:

Please refer to the submission by Janssen Pharmaceuticals and Novartis Pharmaceuticals intended to support the use of MCP-Mod^{1, 2} as an efficient statistical methodology for model-based design and analysis of Phase II dose finding studies under model uncertainty. We have completed our review of your submission and have determined it is fit-for-purpose in the context outlined in this letter.

MCP-Mod: CHMP (2014) Qualification Opinion and (2016) FDA Fit-for-Purpose Determination

- Both emphasize the importance of conducting proper dosefinding studies before going to Phase III
- MCP-Mod will encourage better study designs (with more dose levels and broader dose-range)
 - MCP-Mod is only one method among several others
- Acceptance of model-based techniques often subject to discussion
 - EMA/CHMP and FDA are positive on MCP-Mod
- Difference of MCP-Mod to other model-based approaches
 - Modelling activity is pre-specified at design stage (less "cherry-picking")
 - Acknowledges model uncertainty

Dose Finding

Take home messages

- Precise estimation of dose response provides the strongest basis supporting dose selection for Phase III / submissions
- Traditional dose ranging designs do not provide explicit dose response characterization, and often lack precision to differentiate active doses
- Model-based dose response assessment requires careful consideration of trial design
 - Essential to ensure inclusion of sufficient doses to cover both the steep part of the curve and the plateau
- Dose response relationships exist for both efficacy and safety, and it is necessary to estimate the therapeutic window
- Adaptive designs, in which dose allocation changes based on observed responses, should routinely be considered

Questions?

50 | Improving Dose Finding in Drug Development: MCP-Mod Approach